
Acta Numerica (2001), pp. 313–355 c© Cambridge University Press, 2001

Data mining techniques

Markus Hegland

Centre for Mathematics and its Applications,

School of Mathematical Sciences,

Australian National University,

Canberra ACT 0200, Australia

E-mail: Markus.Hegland@anu.edu.au

Methods for knowledge discovery in data bases (KDD) have been studied for
more than a decade. New methods are required owing to the size and complex-
ity of data collections in administration, business and science. They include
procedures for data query and extraction, for data cleaning, data analysis,
and methods of knowledge representation. The part of KDD dealing with
the analysis of the data has been termed data mining. Common data mining
tasks include the induction of association rules, the discovery of functional
relationships (classification and regression) and the exploration of groups of
similar data objects in clustering. This review provides a discussion of and
pointers to efficient algorithms for the common data mining tasks in a math-
ematical framework. Because of the size and complexity of the data sets,
efficient algorithms and often crude approximations play an important role.

CONTENTS

1 Introduction 313
2 Association rules 317
3 Classification and regression 328
4 Regression 336
5 Cluster analysis 344
References 350

1. Introduction

The following is an attempt at an introduction and review of some current
data mining techniques. The main focus is on the computational aspects
of data processing aspects, and not on statistics, data management or data
retrieval. Data mining is a new and rapidly growing field. It draws ideas
and resources from several disciplines, including machine learning, statist-
ics, database research, high-performance computing and commerce. This
explains the multifaceted and rapidly evolving nature of the data mining

314 M. Hegland

discipline. While there is a broad consensus that the abstract goal of data
mining is to discover new and useful information in databases, this is where
the consensus ends, and the means of achieving this goal are as diverse
as the communities contributing. Thus any reasonably sized treatment of
data mining techniques necessarily has to be selective, and perhaps biased
towards a particular approach. Despite this, we hope that the following
discussion will provide useful information for readers wishing to get some
understanding of ideas and challenges underlying a selection of data mining
techniques. This selection includes some of the most widely used data mining
problems such as association rule mining, predictive models, and clustering.
The focus is on fundamental concepts and on the challenges posed by data
size, dimensionality, and data complexity. It is hoped that this overview
gives the computational mathematician, in particular, some starting points
for further exploration. We believe that data mining does provide many new
and challenging questions for approximation theory, stochastic analysis, nu-
merical analysis and parallel algorithm design.

Data mining techniques are used to find patterns in large datasets. A ne-
cessary property of algorithms capable of handling large and growing data-
sets is their scalability, or linear complexity with respect to the data size.
Patterns in the database are described by relations between the attributes.
In a sense, a relational database itself defines a pattern. However, the size of
the relations makes it impossible to use them directly for further predictions
or decisions. On the other hand, these relations only provide information
about the available observations and cannot be directly applied to future ob-
servations. The power of generalization from specific observation is obtained
from statistics and machine learning.

The variables, or attributes, considered here are assumed to be either
continuous or categorical. However, more general data types are frequently
analysed in data mining; see Bock and Diday (2000). The techniques dis-
cussed here are not based on sampling, and access every item in the full
dataset.

The different disciplines are also reflected in different goals of data mining
techniques (Ramakrishnan and Grama 1999):

Induction.
Find general patterns and equations that characterize the data.
Compression.
Reduce the complexity of the data, replace by simpler concepts.
Querying.
Find better ways to query data, i.e., extract information and properties.
Approximation.
Find models that approximate the observations well.
Search.
Look for recurring patterns.

Data mining techniques 315

Furthermore, we may classify data mining algorithms according to three key
elements (Ramakrishnan and Grama 1999):

Model representation.
Decision trees, regression functions and associations.
Data.
Continuous, time series, discrete, labelled, multimedia or nominal data.
Application areas.
Finance and economy, biology, web logs, web text mining.

The discovered patterns can be characterized according to accuracy and
precision, expressiveness, interpretability, parsimony, ‘surprisingness’, ‘in-
terestingness’, or ‘actionability’ (Ramakrishnan and Grama 1999).

Assume that the initial raw data are stored in a relational database, that
is, a collection of tables or relations. Each table contains a sequence of
records, each of which consists of a number of attribute values. These tables
are typically used for transactional purposes, that is, for the management
of a business. For example, a health insurance company would store a
table containing information on all the doctors, another for the patients,
and maybe a third for claims, containing pointers into the other two tables.
Each record in these tables contains information about the individuals: for
example, the patient table would contain the age, sex and location of a
patient. In order to guarantee consistency of the information and avoid
redundancy, the tables are normalized (Date 1995).

Assume now that in a data mining project the claims of patients are to
be further examined. In particular, we might be interested in differences
between claims for different doctors of a particular specialization. Thus a
first step is to restructure the original database into a database where each
new ‘record’ now contains many records from several tables and the data
mining investigation is to compare these ‘records’ in order to find patterns
and outliers.

In a next step, major characteristics of these records are extracted. In our
health insurance example this might be the number of patients, the total
claim or the service offered by a particular doctor. These characteristics
may be symbolic objects (Bock and Diday 2000) including sets, intervals
and frequency distributions, but in this discussion we will mainly contain our
discussion to features which are either continuous variables or categorical.
The choice of these features is very important and often the main reason
for failure or success of a data mining project. If, in our example, the
features do not provide information about doctors and patients, the analysis
of their interrelations will not provide any interesting insights. One data
mining task is indeed the identification of features containing information
that can contribute to a particular research question. We will assume that
the features have been chosen, and focus here instead on the algorithms used

316 M. Hegland

to analyse them. Thus, after these preliminary steps, we are left with one
table or relation which is a sequence of feature vectors, and the data mining
task is to explore and describe how these feature vectors are interrelated.

From a statistical perspective the data are a sequence of independent vec-
tors described by a probability distribution. The goal of data mining is then
to uncover interesting structures or aspects of the underlying probability
distribution. Questions which are addressed are as follows.

• Are there areas that have a higher probability? This is addressed by
clustering techniques and association rules.

• Can some of the variables be explained by others, and how well? This
is addressed by classification and regression.

• Where are the areas where these functional relationships are better/
worse? The analysis of areas of high misclassification rates and the
residuals of regression address this.

The sizes of databases analysed are growing exponentially. In fact, it has
been suggested that data grow at the same rate as computational resources,
which, according to Moore’s law, double every 18 months (Bell and Gray
1997). Today data collections in the megabyte range are very common.
Gigabyte data collections are becoming available, including many business
data collections, some of which easily extend into the terabyte range, partic-
ularly when the world wide web is involved. Further, data collections in the
petabyte range are now emerging. The largest challenge is not so much the
absolute size of the databases but their constant growth. Thus one of the
largest challenges in computer science in general is the generation of systems
which are capable of handling such growing datasets, that is, the systems
need to be scalable (Bell and Gray 1997). Even if hardware and software
performance scale at the same rate, the computational complexity may des-
troy overall scalability. Indeed, if one were to use an O

(

n3
)

algorithm, then
a typical data mining task in 10 years time would require roughly 10,000
times as long compared to a similar typical data mining task today, as both
the data size (n) and the computational speed would have increased about
100-fold during this period, but the computational complexity would have
increased by 106. Thus a typical data mining task may take one hour today,
but in 10 years time a similar typical data mining task would take over
one year due to the combined effects of data growth, increase in comput-
ing speed and O

(

n3
)

complexity. Thus it is essential that all data mining
algorithms have near-linear time complexity with data size (O(n log(n) is
usually acceptable).

The areas selected for the current discussion are association rules (Sec-
tion 2), classification and regression (Section 3) and clustering (Section 5).
The reader wishing to get further pointers to these and other areas of data
mining is encouraged to search for relevant literature on the web, a useful

Data mining techniques 317

guide being the book on data mining by Han and Kamber (2001). In addi-
tion to discussing a vast collection of data mining research it also provides
a database perspective. Association rule discovery is perhaps data mining
at its purest, and the techniques, while possibly motivated by earlier work
in rule discovery, have evolved within the data mining community. As this
area is the newest of the three covered, the mathematical foundations are
less well studied. In contrast, there has been a lot of theoretical work in the
area of classification in the machine learning community: in particular, we
would like to point to the book by Devroye, Györfi and Lugosi (1996). While
linear regression is widely studied in statistics, non-parametric regression is
still a relatively new field, particularly in the case of high-dimensional data.
Clustering techniques have been used for many years and the literature on
clustering is quite formidable. We will only reveal the tip of the iceberg here.

2. Association rules

The motivation for association rules comes from market basket analysis (see
Agrawal, Imielinski and Swami (1993)). A market basket is a collection
of items purchased by a customer in one transaction. (In the case of retail
shops this is the content of a shopping trolley.) Typically we are faced with a
large number of possible items and market baskets which only cover a small
proportion of all items. It is observed that items are purchased in groups,
and the aim of the market basket analysis is to detect these groups. More
specifically, we would like to be able to predict groups of items that occur
in a market basket given that certain items are present. This information is
then used for product placement in shops and on web pages.

The underlying data are modelled as a sequence of data records or trans-

actions ω ∈ Ω. It is assumed that the records are distributed according
to a distribution function p : Ω → R. Rules are a very popular way to
express knowledge about the data because they are comprehensible. Rules
consist of ‘if-then clauses’ which depend on the data. The probabilities are
normalized; in the case of a finite set Ω we have

P (Ω) =
∑

ω∈Ω

p(ω) = 1. (2.1)

In this discussion it is assumed that the probability is time-invariant; in
practice the distributions may vary. Market basket analysis that takes this
into account is discussed in Ramaswamy, Mahajan and Silbershatz (1998).

In the case of association rules, the records ω are subsets of a set of items
J = i1, . . . , im, which is here assumed to be finite. Association rules are
statements about itemsets A ⊂ J and B ⊂ J ; in particular, the rule

A ⇒ B

318 M. Hegland

states that, for many transactions ω, we may conclude B ⊂ ω if we know
that A ⊂ ω. Such a rule is only useful if A ⊂ ω, and we say that a trans-
action ω supports A in this case. The probability that a randomly selected
transaction ω contains A is the support s(A):

s(A) := P ({ω : A ⊂ ω ⊂ J}) . (2.2)

In practice, the support is obtained from the database as the ratio of trans-
actions ω supporting A to the total number of transactions N :

s(A) ≈ NA

N
, (2.3)

where NA = |{ωi : A ⊂ ωi}| is the number of transactions supporting A,
and |X| denotes the cardinality of the set X.

Often, there is no distinction made in practice between the probability
and this ratio of frequencies, which is then also denoted with s(A).

The support of the association rule A ⇒ B is defined by

s(A ⇒ B) := s(A ∪B), (2.4)

the probability that both A and B are subsets of a random ω. For association
rule mining, the user imposes a minimal support s0 for any rule that is
further explored, that is, s(A ⇒ B) > s0. This limits the number of spurious
rules generated.

A second measure of the ‘interestingness’ of a rule is the confidence

c(A ⇒ B) :=
s(A ∪B)

s(A)
, (2.5)

which is the (conditional) probability that B ⊂ ω given that A ⊂ ω. In
addition to the minimal support, the user selects a minimal confidence in
order to prune out random rules. An association rule which satisfies both
s(A ⇒ B) ≥ s0 and c(A ⇒ B) ≥ c0 is called a strong association rule.
High confidence means that, in all the transactions containing A, a large
proportion also contains B. However, this is only interesting if, in the subset
of itemsets containing A, the itemsets also containing B are more frequent
than in the full set. The ratio of these proportions is called the lift of the
association rule:

γ(A ⇒ B) :=
c(A ⇒ B)

s(B)
=

s(A ∪B)

s(A)s(B)
.

Note that γ(A ⇒ B) = γ(B ⇒ A).
The co-occurrence of A and B in the transactions ω is further analysed in

the contingency table (see Table 2.1), and it turns out that all the frequencies
can be computed from N , NA, NB and NA∪B. The rule A ⇒ B is irrelevant
if the association of A ⊂ ω with B ⊂ ω only occurs owing to coincidence,

Data mining techniques 319

Table 2.1. Contingency table for A ⇒ B

A ⊂ ω A �⊂ ω Σ

B ⊂ ω NA∪B NB −NA∪B NB

B �⊂ ω NA −NA∪B N −NA −NB + NA∪B N −NB

Σ NA N −NA N

that is, the two events are statistically independent. This hypothesis can be
tested using a χ2 test statistic (see, e.g., Dobson (1990)) because

X2(A ⇒ B) = N
(s(A ∪B) − s(A)s(B))2

s(A)s(B)(1 − s(A))(1 − s(B))

can be seen to have a χ2 distribution with 2 degrees of freedom if the supports
are estimated with the frequencies. Note that all the measures so far could
be expressed in terms of the support s(A) of itemsets A.

If the number of transactions supporting NA is small, the confidence es-
timate can become unreliable owing to large random fluctuations. In this
case the Laplace estimator

c(A ⇒ B) ≈ NA∪B + 1

NA + k
,

where 1/k is an a priori guess of the confidence, may improve accuracy
(Segal and Etioni 1994); an alternative is the Yates correction (Quinlan
1987) for an application to rule induction.

In addition to confidence, support, lift and χ2, many other criteria have
been used to describe the interestingness of an association rule. Many such
measures depend on the application. However, the basic techniques rely on
properties of support and confidence and thus these will be the only two
measures discussed further here. Alternatives and further discussion of such
measures can be found in Chen, Han and Yu (1996), Srikant and Agrawal
(1995) and Silberschatz and Tuzhilin (1996).

The enumeration of all strong association rules is a considerable search

problem. In the general case, the determination of optimal rules is known to
be NP-hard (Morishita and Nakaya 2000). For the determination of strong
association rules, however, efficient algorithms have been found. There are
O
(

mk
)

k-itemsets with a low number k of items from a total number of
m items. Evaluating all the rules generated from these itemsets requires
O
(

Nmk
)

tests for support, which is not feasible computationally. Fortu-
nately, not all the itemsets need to be checked, as most have a very small
support. The foundation is the anti-monotonicity property of the support

320 M. Hegland

function. Even though the following properties follow readily, because of the
importance of the application we formulate them as lemmata.

Lemma 1. The function s(A) is anti-monotone, that is, if A ⊂ B then
s(A) ≥ s(B) and furthermore s(∅) = 1.

Proof. The anti-monotonicity follows from the monotonicity of the prob-
ability P because, if A ⊂ B, then

{ω : A ⊂ ω} ⊃ {ω : B ⊂ ω}.
Furthermore, by equation (2.1), we have

s(∅) = P ({ω : ∅ ⊂ ω}) = 1. �

Setting B −A := {i ∈ B : i �∈ A}, we derive the following result from the
definition.

Lemma 2. If B ⊂ A then s(A ⇒ B) = s(A) and c(A ⇒ B) = 1. Further-
more, s(A ⇒ B) = s(A ⇒ (B − A)) and c(A ⇒ B) = c(A ⇒ (B − A)). In
particular,

s(∅ ⇒ ∅) = 1 (2.6)

s(∅ ⇒ A) = s(A ⇒ ∅) = s(A) (2.7)

c(∅ ⇒ ∅) = 1 (2.8)

c(∅ ⇒ A) = s(A) (2.9)

c(A ⇒ ∅) = 1. (2.10)

Proof. Firstly, s(A ⇒ B) = s(A ∪ B) = s(A) and c(A ⇒ B) = s(A ∪
B)/s(A) = s(A)/s(A) = 1.

Then s(A ⇒ B) = s(A ∪ B) = s(A ∪ (B − A)) = s(A ⇒ (B − A) and
c(A ⇒ B) = s(A ∪B)/s(A) = s(A ∪ (B −A))/s(A) = c(A ⇒ (B −A)). �

Basically, rules with A ∩ B �= ∅ do not do anything new, and so we only
consider rules A ⇒ B for which

A ∩B = ∅.
The association rule ∅ ⇒ ∅ is the trivial rule, and the rule ∅ ⇒ A, sometimes
also written as ‘⇒ A’, can be identified with the itemset A, thus making the
itemsets just a special case of an association rule.

An itemset A satisfying a condition s(A) ≥ s0 for a given s0 is called a
frequent itemset. (Note that this definition is not absolute: it depends on
the choice of the parameter s0.) The main property of frequent itemsets is
as follows.

Lemma 3. (a priori property) Every subset of a frequent itemset is
frequent.

Data mining techniques 321

Proof. Let A ⊂ J be frequent, that is, s(A) ≥ s0, and let B ⊂ J . Then, by
the anti-monotonicity property we have s(B) ≥ s(A) and thus s(B) ≥ s0,
and thus B is also a frequent itemset. �

The a priori property has been the strongest tool in the development
of efficient association mining algorithms. Once the frequent itemsets are
determined, finding strong association rules is very efficient.

Lemma 4. Once all the frequent itemsets and their supports are known,
the strong association rules can be found without any further scans of the
database.

Proof. By definition, for any strong association rule A ⇒ B the itemset
A ∪B is frequent. By the a priori property, the itemset A is frequent too.

Thus all the the strong association rules can be found by searching through
all partitions C = A ∪ B for all frequent itemsets C and selecting the ones
for which the confidence c(A ⇒ B) = s(C)/s(A) > c0. This does not require
any further scans as both C and A are frequent and thus their supports s(C)
and s(A) were evaluated earlier. �

So far, a general algorithm for the determination of strong association
rules consists of two steps:

(1) find all frequent itemsets A and their support s(A);

(2) from this determine the strong itemsets.

Only the first step requires scanning the database. Thus the first step is
usually orders of magnitude more expensive than the second step. Most
improvements of the algorithm focus on the first step; the second step is
achieved simply by enumerating all possible rules from partitions of the
frequent itemsets.

As the size |ω| of the transactions is finite, the size of the frequent itemsets
|A| is limited. Let a k-itemset be an itemset A with size |A| = k. Then
it follows from the a priori property that there are many more frequent
k-itemsets than there are frequent (k+ 1)-itemsets. A systematic search for
the frequent itemsets may thus look for frequent itemsets by order of their
size. Let the set of all frequent k-itemsets be denoted by Lk, that is,

Lk := {A ⊂ J : s(A) ≥ s0, |A| = k},
in particular, L0 = ∅. Assume in the following, that the items ik ∈ J are
ordered (in an arbitrary but fixed way). Given this ordering we define the
join Lk ∗ Lk of two sets of k-itemsets by

Lk ∗ Lk = {{i1, . . . , ik+1} : {i1, . . . , ik}, {i1, . . . , ik−1, ik+1} ∈ Lk},
where the is are ordered, that is, is ≤ is+1, for s = 1, . . . , k.

This provides a first upper bound for the set of frequent k-itemsets.

322 M. Hegland

Lemma 5. We have
Lk+1 ⊂ Lk ∗ Lk, for k ≥ 0.

Proof. For any {i1, . . . , ik+1} ∈ Lk+1, by the a priori property all sub-
sets of size k are frequent k-itemsets; in particular, {i1, . . . , ik} ∈ Lk and
{i1, . . . , ik−1, ik+1} ∈ Lk and so {i1, . . . , ik+1} ∈ Lk ∗ Lk. �

This set can thus be easily constructed. While it may have much fewer
than O

(

mk
)

elements, it can still be large and may be pruned further us-
ing the a priori property. This pruning step, which does not require any
database scanning, generates a candidate itemset Ck+1 from the Lk ∗Lk by

Ck+1 := {A ∈ Lk ∗ Lk : all k-itemsets B ⊂ A satisfy B ∈ Lk}.
Application of the a priori property again gives

Lk+1 ⊂ Ck+1, k = 1, 2,

This candidate itemset is the best we can get using the a priori property as
any element contains only frequent itemsets.

Lemma 6. Any B ⊂ A of any A ∈ Ck is a frequent itemset.

Proof. By construction any k-itemset B ⊂ A ∈ Ck is a frequent k-itemset.
Any j-itemset with j < k has to be by construction a subset of a frequent k
itemset and is thus also frequent. �

Thus the a priori property provides ways to reduce the size of the negative

border , that is, the points which are in Ck but not in Lk. While the supports
of the itemsets in Lk are required for the determination of the confidence,
the supports of the elements in the negative border are ‘wasted’, and so we
would like to keep the size of |Ck| − |Lk| to a minimum.

The a priori algorithm implements the repeated application of join, prune
and evaluation of the support of itemsets to determine all itemsets. It is
described in Algorithm 1, opposite.

The most expensive step is the scanning of the database. If we assume
that determining whether a k-itemset is supported by a transaction ω re-
quires O(k) operations, then the complexity of the a priori algorithm is
O(N

∑∞
k=1 |Ck|k). The performance of the a priori algorithm has been im-

proved in numerous ways (see, e.g., Han and Kamber (2001)), including

• reduction of the size of scans;

• reduction of the number of scans.

The reduction of the size of scans prunes transactions ω that do not contain
frequent itemsets, using another consequence of the a priori property.

Lemma 7. Every item of a frequent (k+1)-itemset is contained in at least
k frequent k-itemsets and thus in at least k candidate k-itemsets.

Data mining techniques 323

Algorithm 1 a priori algorithm

C1 := {{i} : i ∈ J} {set of all 1-itemsets}, k = 1
while Ck �= ∅ do

For all A ∈ Ck determine s(A) by scanning database.
Lk := set of all frequent itemsets in Ck.
Construct join Lk ∗ Lk.
Prune result by removing sets with infrequent subsets to get Ck+1.
k := k + 1

end while
return all frequent itemsets

⋃

Lk

Proof. Let i be an item of a frequent (k+1)-itemset A. Then A has exactly
k subsets of size k that contain i. Because of the a priori property these
subsets have to be frequent k-itemsets.

The set of candidate k-itemsets Ck contains all frequent k-itemsets be-
cause Lk+1 ⊂ Ck+1, as derived in the proof of Lemma 5. �

Using this lemma, the a priori algorithm is extended to contain a pruning
of elements of transactions that are not in k different candidate k-itemsets.
This pruning is done during the scanning step and no additional scanning is
required. Note that whole transactions may be removed from the database
and a substantial reduction in complexity may result. For more details
and an implementation of this idea see Park, Chen and Yu (1995a), where
a reduction of the number of counting steps based on hashing has been
suggested.

Smaller association mining tasks may fit into memory and so multiple
scans may not be necessary. However, for very large databases this is not
realistic, and in this case the database has to be completely scanned from
disk k times, where k is the maximal number of elements of the occurring
frequent itemsets. A partitioning approach can reduce this number to two
scans, which can substantially speed up the algorithm. For this let the
database D = (T1, . . . , TN) be partitioned into p pairwise disjoint subsets
Di, that is,

D = D1 ∪ · · · ∪Dp

such that Di ∩Dj = ∅ for i �= j. This is called a partition of D. We define
the support of an itemset A in the partition Dj by

sj(A) :=
|{ω ∈ Dj : A ⊂ ω}|

|Dj |
,

and an itemset A is said to be frequent in Dj if it satisfies

sj(A) ≥ s0.

324 M. Hegland

With this we get the following result.

Lemma 8. (Invariant partitioning property) Let D1, . . . , Dp be a par-
tition of D. Then each itemset that is frequent in D is frequent in at least
one subset Di.

Proof. Let A be an itemset that is frequent in D. Then

s0 ≤ s(A) =
|{ω ∈ D : A ⊂ ω}|

|D|

=

p
∑

i=1

|Di|
|D|

|{ω ∈ Di : A ⊂ ω}|
|Di|

as {Di} are disjoint

=

p
∑

i=1

|Di|
|D| si(A)

≤ max
1≤i≤p

si(A).

Thus A is least frequent in the set Di in which it has maximal support. �

The modified a priori algorithm in a first scan gathers all the frequent
itemsets and their supports in the partitions Di which are chosen such that
they fit comfortably in memory. Because of the invariant partitioning prop-
erty the local frequent itemsets are potential frequent itemsets over the whole
database. A second scan through the data returns the supports for all these
potentially frequent itemsets over D. This can be done very efficiently, as
the supports of many of these itemsets are already known for many parti-
tions. See Savasere, Omieski and Navanthe (1995) for a further discussion
of this approach. Other approaches to the reduction of the number of scans
are found in Toivonen (1996) and Brin et al. (1997).

A common problem in the determination of strong association rules is
that the items may be too specific to produce any rules of interest. In the
case of market basket analysis, the brand names and quantities as typically
represented by a bar code may not reveal anything interesting. Choosing a
more general concept, such as a class of consumer goods, may lead to more
interesting results. If items are included in the set J which refer to more
general concepts the relationship between the items is modelled by a directed

acyclic graph with nodes in J . This can represent multiple hierarchies or
taxonomies. Of particular interest is the transitive closure of this graph.
An edge (i1, i2) in this transitive closure means that the the item i2 is a
generalization of i1, or i1 is of type i2. For example, i1 could be rye bread,
and i2 could be bread, in the example of market basket analysis. The graph
is defined by the application and is a type of domain knowledge or constraint
on the data.

Data mining techniques 325

Using this we can generalize the concept of support. An itemset B sup-

ports an itemset A if, for any element i ∈ A, either

• i ∈ B, or

• there is a j ∈ B such that i is an ancestor of j.

We say that A generalizes B, or A ≤ B. We see immediately that if B ⊂ A
then B ≤ A. Also, the relationship ≤ is transitive owing to the transitivity
of ⊂, and it can be seen that this defines a partial ordering on Ω that extends
the ordering given by ⊂. The relationship with set operations is very close
and we have the following.

Lemma 9. For any itemsets A,B and C, we have

C ≥ A and C ≥ B if and only if C ≥ A ∪B.

Proof. If C ≥ A and C ≥ B then each i ∈ A ∪ B is an element of one of
A or B (or both) and so it is either an element of C or an ancestor of an
element of C, which means that A ∪B generalizes C.

Conversely, if C ≥ A ∪B then, as any element of A is also an element of
A∪B, it is either an element of C or an ancestor of an element of C. Thus
A ≤ C, and the same argument holds for B. �

In the special case where C = A the above lemma gives A ≥ A ∪ B
if A ≥ B. Because A ⊂ A ∪ B we also have A ≤ A ∪ B. Thus the
supports of the two itemsets are identical, and for our purposes they are
thus indistinguishable. An example of such an itemset A∪B would contain
both an item and an ancestor of this item. It is suggested that the itemsets
are normalized to exclude this case, so that the only itemsets we will consider
are modulo any ancestors of the elements in the itemset. We define A ∨ B
to be the normalization of A ∪ B and we will still denote the normalized
itemsets by A and B. The support of an itemset in this hierarchical context
is now defined by

s(A) := P (ω ∈ Ω | A ≤ ω). (2.11)

Note that the probability distribution has to be compatible with the hier-
archy so that a distribution over the normalized itemsets can be defined.
It follows that the support is also anti-monotone, that is, for A ≤ B we
have s(B) ≤ s(A). A frequent itemset is defined as before by s(A) ≥ s0.
The a priori property is obtained as above from the a priori algorithm.
Further, frequent k-itemsets, the join operation, pruning and the candidate
itemsets are straightforward generalizations. Normalization only has to be
done explicitly in the a priori algorithm when generating the C2, because
all the itemsets are normalized automatically in the process (Srikant and
Agrawal 1995).

326 M. Hegland

Lemma 10. If s is defined as in equation (2.11) and C2 is pruned such
that it contains only normalized itemsets, then both Ck and Lk generated
in the a priori algorithm contain only normalized itemsets.

Proof. By construction C1, C2 and L1, L2 are normalized. We use induction
to show that the others are normalized as well. Assume now that L1, . . . , Lk

are normalized and k ≥ 2. If there were an unnormalized set A ∈ Ck+1, then
there would be two items i1, i2 ∈ A such that i1 is an ancestor of i2. By
Lemma 6, however, any pair of elements of a subset of Ck+1 is frequent, that
is, {i1, i2} ∈ L2 and, because L2 is normalized, i1 can never be an ancestor
of i2 and thus Ck+1 has to be normalized. �

As a consequence of this lemma the a priori algorithm can easily be modi-
fied to include hierarchies. The importance of this approach becomes appar-
ent for the case of quantitative association rules. In this case the transactions
contain sets of real numbers. Typically, the probability of any particular
combination of real numbers is zero for continuous probability distributions
and thus there are no frequent itemsets in the original sense. However, if we
include intervals as items we can get frequent itemsets again. We will not
go into the theory of quantitative association rules here but instead we will
show how hierarchies provide a framework for approximation of association
rules, in particular for discretization in the case of quantitative association
rules. Further discussion of the case of hierarchical association rules can
be found in Agrawal and Srikant (1995), Mannila, Toivonen and Verkamo
(1995), Mannila and Toivonen (1996) and Shintani and Kitsuregawa (2000).

In the following, hierarchy-based approximation will be discussed in the
case of finite sets J but this can be generalized to more general cases. So,
given a set of items J with a graph, we would like to understand how well a
subset of items J ′ ⊂ J covers the space of strong association rules. The set
J ′ has to satisfy several properties: in particular, for any element in J there
has to be at least an ancestor in J ′. We can then approximate any item i ∈ J
by the closest ancestor π(i) ∈ J ′. This mapping induces a mapping between
itemsets on J and J ′ which is defined elementwise, and again denoted by
π as

π(A) := {π(i) : i ∈ J}.
From this we get

π(A ∪B) = π(A) ∪ π(B) (2.12)

π(A) ≤ A (2.13)

π(A) ∪ π(B) ≤ A ∪B (2.14)

s(A) ≤ s(π(A)). (2.15)

If we can also bound the support of this ‘projection’ from below by

s(π(A)) ≤ Ks(A)

Data mining techniques 327

for some K ≥ 1, we say that the triple (J, J ′,K) is K-complete. In this case
we can give a bound on the effect this approximation has on the confidence
of rules. We assume that an association rule A ⇒ B is approximated by
π(A) ⇒ π(B).

Lemma 11. If (J, J ′, π) is K-complete then

c(π(A) ⇒ π(B))

c(A ⇒ B)
∈ [1/K,K].

Proof. This bound was proved by Srikant and Agrawal (1996a), who also
provide further analysis and a choice of J ′ for the case of quantitative asso-
ciation rules, where bins or intervals are used to approximate the itemsets.

�

Association rule mining can be generalized to the analysis of sequences,
which has been termed sequence mining. Typically, a sequence is defined
as a sequence of itemsets and frequent k-sequences containing k items can
be found with a variant of the a priori algorithm. Several algorithms have
been discussed in Srikant and Agrawal (1996b), Agrawal and Srikant (1995),
Oates, Schmill, Jensen and Cohen (1997) and Zaki (1998, 2000). Related to
this is the discovery of frequent episodes (Mannila et al. 1995, Mannila and
Toivonen 1996).

Ultimately, itemsets are described by predicates A(ω) defined on the trans-
actions. In multidimensional association rule mining the algorithms are
generalized for sets of predicates. Predicate sets are conjunctions of pre-
dicates and, using the a priori approach, frequent predicate sets are found
from which if-then rules A ⇒ B with precedent A and antecedent B can be
derived. In general such rule induction is an area which has been of much
interest in the machine learning community. The rule induction process se-
lects rules that satisfy certain constraints depending on the dataset. These
constraints relate to the quality or the interestingness of the rules. Typical
data mining tasks are as follows.

• Find the set of all rules that satisfy the constraints. Note in particular
that the consequent C is not determined either.

• For a given consequent and a given ordering of the rules, find the best
antecedents A.

In general, finding best rules is an optimization problem that is known to
be NP-hard (Morishita 1998). One heuristic assumes the availability of a
LEARN-ONE-RULE subroutine which is capable of generating one rule from
any dataset. After this is applied for the first time to the dataset all the
true positives are removed and the LEARN-ONE-RULE is applied again.
This greedy algorithm is the sequential covering algorithm (Mitchell 1997,
p. 275).

328 M. Hegland

A different approach is based on beam search and a very general algorithm
for rule induction is suggested in Provost, Aronis and Buchanan (2000). At
each node of a search tree, a set of possible specializations consisting of
conjunctions with new predicates is chosen. Good efficiency is obtained
by pruning off unpromising paths. This approach was also applied to as-
sociation rule mining in Webb (2000). Classical rule induction techniques
include RL (Clearwater and Provost 1990) or RIPPER (Cohen 1995). Par-
allel and distributed rule induction algorithms can be found in Hall, Chawla,
Bowyer and Kegelmayer (2000), Williams (1990) and Hall, Chawla and Bow-
yer (1998).

Association rule mining is a recent development and has its origins in the
data mining community. This is an area also undergoing constant change
and development. At the core of the developments are the focus on frequent
itemsets and the a priori property. Current research is dealing with the
following questions:

• Which interestingness criteria produce the most useful rules?

• What are the most effective algorithms? Of interest are scalability with
respect to data size, parallelism, higher dimensionality, disk access and
memory hierarchies.

• How are complex data analysed? This problem includes multimedia
and web data.

A good collection of pointers to the literature up to around 2000 can be
found in Han and Kamber (2001).

3. Classification and regression

Functional relationships

Y = f(X1, . . . , Xd)

between the features Y and Xi form a powerful tool for summarizing aspects
of the data in order to extract important data classes or to predict future
data trends. The data is again modelled as a set of transactions D =
(ω1, . . . , ωN) where ωi ∈ Ω, but in addition it is assumed that we also know
some features or random variables Y and Xi defined on Ω. If Y is categorical,
the problem of determining the model f from the data is called classification,
and in the case of continuous Y we speak of regression.

3.1. Classification

Classification is treated in depth in the machine learning literature; see,
e.g., Mitchell (1997). Both associations A ⇒ B and functions Y = f(X)
provide relations between features of the data. The following is a comparison
of some properties of associations and functions.

Data mining techniques 329

• The dependent variable Y is fixed for classification, while finding the
consequent is part of association rule mining.

• The features of association rules are the predicates, which are Boolean,
while in classification the features can take arbitrary types. The right-
hand side Y of a classifier has values in a finite set {C0, . . . , Cm} and
the most commonly discussed case is m = 2, and in this case Y is
basically a predicate.

• The performance of a classifier is judged by its accuracy, rather than
by support and confidence.

• One function f summarizes all the data compared with a set of associ-
ation rules.

• As in the case of association rule induction, the search for good classifi-
ers often starts with a simple classifier, and successively more complex
ones are considered until the desired performance is achieved.

In terms of the distribution of the probability the misclassification rate is
defined by

L(f) = P ({ω : Y �= f(X)}).
This is an important measure of the quality of the classifier and is also
called the Bayes risk. In the case where Y , and thus f(X), is Boolean,
the misclassification rate can be determined from the support defined in the
previous section by

L(f) = s(Y) + s(f(X)) − 2s(Y ∧ f(X)).

This suggests that association rule technology can be applied to classifica-
tion. Examples of this approach can be found in Dong and Li (1999), Li,
Dong and Ramamohanrarao (2000), Lent, Swami and Widom (1997), Liu,
Hsu and Ma (1998), and Meretakis and Wüthrich (1999).

3.2. Decision trees

Decision or classification trees use a partitioning of the domain Ω into hyper-
rectangles parallel to the values of the features Xi. They can be defined
recursively by

f(X) =

{

f1(X), if A(X) holds,

f2(X), else,

where f1 and f2 are either constant or again decision trees. The predicate
A(X) defines the split. In most cases the predicate A(X) only depends
on one of the features Xi. Decision trees originated in machine learning
and statistics (Breiman, Friedman, Olshen and Stone 1984, Quinlan 1986,
Quinlan 1993). During the induction of the decision tree the data needs to
be revisited for each new level of the tree. For N data points, a balanced tree

330 M. Hegland

will have O(log(N)) levels. As the tree building algorithm has to scan the
data for each level, the average complexity of the tree building algorithm is
O(N log(N)m), where m is the number of attributes or features considered.
Thus the algorithm is close to scalable in the number of data points, espe-
cially under the assumption that the levels of the tree are kept constant for
growing data sizes.

The models from (small) decision trees are comprehensible and can quite
easily be cast as standard database queries (which may be expressed in SQL,
the standard for relational database queries). They can be generated rapidly
and show good accuracy. These properties make them well suited to data
mining. They can also be used as a starting point for the generation of rules.
In fact, there is one rule per leaf of the tree, which is obtained by taking the
conjunction of all the predicates A(X) used to split the tree on a path from
the leaf to the root. With the topmost split we get, in the case of Boolean f ,

f(X) = A(X) ∧ f1(X) ∨A(X) ∧ f2(X),

where A(X) denotes the negation of A(X). This provides a recursion to
build the rules. We start with constant values at the leaves. Then, let

the A
(1)
i (X) ⇒ B

(1)
i and A

(2)
i (X) ⇒ B

(2)
i be the rules generated for both

descendants of the node; then

A(X) ∧A
(1)
i (X) ⇒ B

(1)
i , and A(X) ∧A

(2)
i (X) ⇒ B

(2)
i

are the rules for the top node. The antecedents are constants and do not
change during the extraction process. They are used to initialize the rules

for each leaf to True ⇒ B
(s)
i .

These initial rules, however, are often not very useful and may have low
support, as the supports of the antecedents of the rules are mutually exclus-
ive. Several steps are required to create rules that are useful for data mining
from the initial rules (Quinlan 1993):

• Remove predicates in the rule which do not improve the rule. This
pruning is often done based on a χ2 test.

• Rules with overall low quality are removed and similar rules are merged.
• A default rule is required which covers all the cases not covered by

other rules.

These steps do require further assessment of the quality of the generated
rules and thus need further scanning of the data. As the pruning step may
need to be repeated several times, the time spent on this data scanning may
be substantial. See Quinlan (1987) for implementation of the rule induction
from decision trees.

The basic algorithm for the construction of the decision tree consists of
repeated assessment of the purity of the nodes in each partition and decisions
on which partition to split into subpartitions and how; see Algorithm 2.

Data mining techniques 331

Algorithm 2 Basic decision tree algorithm

Partition(Ω)
if all the points in Ω are of the same class then

return
else

for each attribute A in Ω do
evaluate all splits of A

end for
find best split Ω = Ω1 ∪ Ω2

Partition(Ω1)
Partition(Ω2)

end if

The evaluation of the splits is often based on an impurity function φ(p)
based on the proportion p of transactions which are in the class of interest.
If the proportion of class 1 cases is p in Ω, and p1 and p2 in the subsets Ω1
and Ω2 respectively, then the decrease of the impurity due to the splitting
is modelled as

φ(p) − sφ(p1) − (1 − s)φ(p2),

where s is the proportion of cases in Ω1. Examples of impurity functions are:

• φ(p) = min(p, (1 − p)) (based on misclassification rate)

• φ(p) = 2p(1 − p) (Gini (Breiman et al. 1984))

• φ(p) = −p log(p) − (1 − p) log(1 − p) (entropy (Quinlan 1986))

Alternatively, the χ2 value is used. The construction of the tree has two
steps. First the tree is grown until each leaf is either pure or contains very
few points. Then the tree is pruned again in order to reduce overfitting
using an error estimator.

In order to handle the large and growing data sizes, scalable parallel al-
gorithms are required. An example is the SPRINT algorithm (Shafer, Agra-
wal and Mehta 1996). The computing platform is a ‘shared nothing’ paral-
lel computer (e.g., a Beowulf cluster) where the processors have their own
memories and disks and the data are distributed evenly over these local disks.

The data records are assumed to be sequences of features (x
(s)
1 , . . . , x

(s)
d , y(s))

for s = 1, . . . , N are stored with some redundancy in sorted attribute lists

which for each attribute xi consist of sequences (i, x
(i)
s , y(i)) sorted on x

(i)
s .

This allows the efficient evaluation of splits in the case of real attributes.
This evaluation is done based on histograms of the values of y for each xs,
and can be done in parallel. Hash tables are used to associate the transaction
record identifier i with both the processor and the partition, and the Gini
index is used for splitting. Experiments demonstrate the scalability of this

332 M. Hegland

approach. In fact, SPRINT performs well with respect to three important
criteria:

Scale-up. Fix the data per processor and study time as a function of the
number of processors.

Speed-up. For a constant data size the time is studied as a function of p.

Size-up. The number of processors is fixed and the time is studied as a
function of the data size n.

If the misclassification rate is determined from the dataset used for train-
ing, we get an estimate that is systematically too low. Better estimates
are obtained from the hold out method, where the data are partitioned into
training data for computation and test data for the estimation of the er-
ror. A popular alternative is generalized cross-validation or GCV (Golub,
Heath and Wahba 1979), which emulates the hold-out technique without
the reduction of the size of the training data.

3.3. Bayesian classifiers

The best classifier minimizes L(f) and can be characterized in terms of the
probability distribution as follows (see Devroye et al. (1996, p. 10)).

Theorem 1. Let Y ∈ {0, 1} and

f∗(x) =

{

1, if P (Y = 1|x) ≥ 0.5,

0, else.

Then L(f∗) ≤ L(f).

The classifier f∗ minimizing L(f) is called Bayes’ classifier. The minimum
L∗ = L(f∗) is the Bayes error and characterizes how difficult a certain clas-
sification problem is. Other measures have been considered in the literature
but are seen to be closely related to the Bayes error (Devroye et al. 1996,
p. 21ff).

In practice, the distribution of the random variables is unknown and so the
classifier has to be determined from observations. The observations are mod-
elled as a sequence (Xi, Yi)

n
i=1 of identically distributed independent random

variables. Practical classifiers are then functions fn(x;X1, Y1, . . . ,Xn, Yn).
An alternative, more general definition of the Bayesian classifier (Duda

and Hart 1973) is

f∗(x) = argmaxy p(y|x)

where, as usual, p(y|x) = P (Y = y|X = x) is the conditional probability of
Y being in class y when X = x. Practical estimators for f∗ are obtained
by the introduction of estimates for the conditional probabilities p(y|x) in
the above formula. The classifiers obtained in this way are called plug-in

Data mining techniques 333

decisions in the case of Boolean y and we have the following result (Devroye
et al. 1996, p. 16).

Theorem 2. We have

P (f(X) �= Y) ≥ P (f∗(X) �= Y) + 2E |η(X) − η̃(X)|,
where η(x) = P (Y = 1|x), η̃ is the estimate of η, and E(·) denotes the
expectation.

Many estimates of the conditional probability use Bayes’ formula:

p(y|x) =
p(x|y)p(y)

p(x)
,

where p(y) is the probability of class y and p(x) is the probability density
function in the feature space in order to apply standard density estimators
rather than have to estimate a family of probabilities.

In the case where the features are conditionally independent random vari-
ables we get

p(y|x) =
p(y)Πd

i=1p(xi|y)
∑

y p(y)Π
d
i=1p(xi|y)

.

Techniques based on this assumption are called naive Bayes estimators.
Langley, Iba and Thompson (1992) have demonstrated the effectiveness of
naive Bayes in the case of independent Boolean features, and a newer ana-
lysis can be found in Langley and Sage (1999). It is also claimed that this
approach works well even in cases where the features are not independent.

Note that f∗ does not depend on the denominator. We obtain a discrim-

inant function by removing the denominator and taking the logarithm

g(y|x) = log p(y) +

d
∑

i=1

log p(xi|y),

and because of the monotonicity of the logarithm we get

f b(x) = argmaxy g(y|x).

The practical determination of f b then uses estimates of the conditional
probability densities p(xi|y) for all the variables xi.

In the case of categorical xi the estimate used for p(xi|y) is just the fre-
quency, and for continuous features we often use a normal distribution for
p(xi | y). In this case we get

g(y|x) ≈ ky +
∑

categorical xi

k(xi|y) +
∑

continuous xi

(xi − µi)
2

2σ2
i

.

334 M. Hegland

There are two steps in the determination of f(x):

(1) The determination of of the probability distributions. This step only
has to be done once but requires the exploration of all the data points.

(2) The determination of the maximum of the discriminant function. This
step has to be done for each evaluation of f(x).

The determination of p(y) requires n additions in order to count the fre-
quencies of all classes. Only the c values of p(y) need to be stored. In order
to determine the distributions p(xi|y) for each feature xi, the frequencies in
the case of categorical xi do require n additions; in the case of continuous
variables and the normal distribution we require 2n additions and n multi-
plications to determine all the variances and means. Thus the total number
of floating point operations required for the first step is

n + d1n + 3d2n,

where d1 is the number of categorical variables and d2 the number of con-
tinuous variables (the dimension is thus d = d1 + d2).

The evaluation of f(x) does require the computation of the discriminant
function for all the c possible values of y, which requires cd additions for the
sum and 5cd2 floating point operations to evaluate the terms of the second
sum.

Thus the naive Bayes classifier is computationally very efficient, as

• the data only have to be read once and do not need to be kept in
memory,

• the algorithm is scalable in the number of observations,

• the algorithm is linear in the number of dimensions, and

• in addition, the main operations of the learning stage can be done in
parallel both over the test dataset and over the dimensions.

However, the naive Bayes classifier does rely on two assumptions: first, it
is based on the probabilistic model of the observations, and second, it re-
quires that the features are independent for each class. However, in practice,
features are mostly correlated. While it has been observed that, even in ex-
amples with correlations, naive Bayes is often as effective as tree-based clas-
sifiers (Langley and Sage 1994), it would appear that dealing with the cor-
relations may improve the performance even further. Domingos and Pazzani
(1997) provide the region where Bayesian classifiers are optimal as well as
further evidence for the good performance.

Langley and Sage (1994) introduce the selective Bayesian classifier , which
is able to remove redundant or heavily correlated features. The algorithm
starts with no attributes, then adds one at a time until no more improvement
is found. As, at each step, the effect of all the remaining attributes has to be

Data mining techniques 335

Table 3.2. Costs in time and space of the naive and flexible
Bayes classifier

Naive Bayes Flexible Bayes

time space time space

training on n cases O(nk) O(k) O(nk) O(nk)
evaluation O(k) O(nk)

recomputed, the complexity of this method is of O
(

d2
)

. In order to estimate
the errors we could consider cross-validation techniques or hold-out, but the
authors have simply used the accuracy on the training set and obtained good
results. They included attributes as long as they did not degrade accuracy.
In view of the complexity of the selective Bayesian classifier we lose the
linear dependence on the dimension, and we have to read the data several
times, once for each feature included.

One limitation of the approach is the use of normal distributions for
the conditional probabilities in the case of numerical variables. John and
Langley (1995) propose an approach using kernel estimators for the densit-
ies, specifically

p(Xi = xi|Y = y) = (nh)−1
∑

j

K

(

x− µj

h

)

.

This increases, in particular, the number of operations for the evaluation
stage. It is shown that in most cases a significant improvement in the clas-
sification performance is obtained. The time and space costs are given in
Table 3.2.

A different way to include dependencies of the features are the Bayesian

networks. A Bayesian network is a directed acyclic graph (DAG) where all
the vertices are random variables Xi such that Xi and all the variables that
are not descendants of Xi or parents of Xi are conditionally independent
given the parents of Xi. The main property of Bayesian networks is that
the probabilities of all the random variables can be computed almost as if
they were independent (Bender (1996, pp. 308–313), Heckerman, Geiger and
Chickering (1995), Friedman, Geiger and Goldszmidt (1997)).

Theorem 3. If (X, E, P) is a Bayesian network, then

P (X) =
∏

P (C(Xi)) �=0

P (Xi|C(Xi)).

Conversely, if (X, E) is a DAG and if fi is a nonnegative function such that

336 M. Hegland

∑

fi(Xi) = 1, then

P (X) =
∏

fi(Xi)

defines a probability space for which (X, E, P) is a Bayesian network. Fur-
thermore, P (Xi|C(Xi)) is either 0 or fi(Xi).

Here C(Xi) denotes the parents (or direct causes) of Xi.

4. Regression

Regression refers in data mining to the determination of functions

Y = f(X1, . . . , Xm),

where the response variable Y is real-valued. The features Xi are assumed to
be given and can have any type. In logistic regression, these models are also
used to model decision functions or data density distributions. Parametric
models, in particular linear models, are immensely popular in data mining,
but non-parametric models are also widely used and will be the focus of
the following discussion. Data mining applications to regression pose some
additional challenges when compared to smaller statistical applications:

• The data mining datasets are very large, with millions of transactions.
Furthermore, they are high-dimensional, including up to several thou-
sand features.

• The models found should be understandable in the application domain.

• The data are usually collected for some other purpose, such as manage-
ment of accounts. Thus carefully designed experiments are an exception
in data mining studies.

This shows that data mining must pay close attention to computational
efficiency and simple models are often preferred. Furthermore, even though
the data can be very large, the limitations of the information in the data have
to be carefully studied, and the effect of skewed or long-tail distributions has
to be assessed.

As before, let ω ∈ Ω denote a transaction and p(ω) be the probability
distribution on Ω. The features Xi and Y are real functions on Ω, i.e.,
random variables. The function f is assessed according to how well it fits
the data, and often the expected squared error is used as a measure of the
error:

E((Y − f(X))2) =

∫

Ω
(Y (ω) − f(X(ω)))2 dp(ω).

Of course, it is impossible to assess this error directly. Practical estimators
use a special portion of the data selected as a test set to estimate the error

Data mining techniques 337

by the sum of squares

R(f) :=
1

N

N
∑

i=1

(y(i) − f(x(i)))2.

In order to avoid over-optimistic error rates, a different independent part of
the data is used for the evaluation of the error. Alternatively, particularly
in the case of small datasets, we use generalized cross-validation, or GCV
(Golub et al. 1979).

The best estimator with respect to the exact mean squared error is the
conditional probability

f(x) = E(Y |X = x).

The straightforward determination of this using the average is usually not
feasible, as it is unlikely that enough (or even one) data points are avail-
able for every possible value of x such that f(x) may be estimated by the
mean of the corresponding values of Y . Assume, for example, m = 30
categorical features with 6 possible values each. Then the total number of
possible values for the independent variable is 630 ≈ 2 · 1023, which is way
beyond the number of observations available. Thus smoothing, simplified
and parametric models have to be used.

A seemingly simple approach to regression is to quantify or discretize Y
and then use a classification technique to approximate f . This approach can
make use of all the classification techniques; however, in order to get good
performance we may have to use a very high number of classes. Consider,
for example, the approximation of a simple one-dimensional linear function.
A linear model requires only two parameters but a classification technique
may require hundreds of parameters. Thus real models may be much simpler
than their approximating (discretized) classification models.

A large class of regression functions has the following form:

f(x) = f0 +
∑

i

fi(xi) +
∑

i,j

fi,j(xi, xj) +
∑

i,j,k

fi,j,k(xi, xj , xk) + · · · ,

where the level of interactions may be determined by the data but an upper
bound is often supplied by the user. It is seen that one or two levels are
often enough and hardly any cases are found with interactions higher than
level 5. These are called ANOVA decompositions, because of the similarity
to the interaction models in ANOVA.

4.1. Regression trees

Regression trees (Breiman et al. 1984) are based on the same ideas as de-
cision trees. They do have the same advantages and, in fact, they may be

338 M. Hegland

used with logistic regression for the determination of classification probabil-
ities. In contrast to techniques based on tensor products of one-dimensional
spaces, regression trees are extremely successful in dealing with high dimen-
sions as their complexity is proportional to the dimension. They have two
shortcomings, however: they do not represent linear functions well and, more
generally, they cannot approximate smooth functions accurately, as they are
discontinuous, piecewise constant functions. This approach is described by
Breiman et al. (1984).

The trees define, as in the case of classification, a partitioning of the space
of the independent variable x and for each partition a function estimate is
provided. The main questions in building the tree are how to split the do-
main into subdomains, how to prune the regression tree and how to associate
functions to the leaves of the tree.

Addressing the last question first, we choose the function constant on all
the subdomains Ωi related to the leaves of the tree. Note that the mean

f j :=
1

Nj

∑

x(i)∈Ωj

y(i)

minimizes the sum of squared residuals

Rj(f) :=
∑

x(i)∈Ωj

(y(i) − f(x(i)))2

between constants and the data over the subdomain Ωj , and, for all leaves
Ωj , we have the least squares approximation

f(x) = f j , x ∈ Ωj ,

which is constant on Ωj . Thus, once the partitioning of the domain is done,
the determination of the ‘best’ function is straightforward. The splitting is
selected based on the reduction of the sum of squares, or, in order to adapt
the complexity of the model to the data, we use a penalized sum of squared
residuals

Rα(f) = R(f) + α|Lf |,
where Lf is the number of leaves of f , that is, a complexity measure, possibly
using a different dataset for its evaluation.

For every variable there are several splittings possible and we select the
one that maximizes the decrease of error in ∆R. This splitting is continued
until each of the leaf nodes contains at most Nmin observations.

Typically, the resulting tree is substantially overfitting the data, and we
would like to select a subtree that is less complex. Complexity is measured
by the number of leaves of the tree, i.e., |Lf |. Thus instead of minimizing
the sum of squares R′(f), we attempt to balance complexity with fit on the

Data mining techniques 339

B0(x) = 1
��������

�
�

�
�

�
�
�
�

��������
B1(x) B2(x) B5(x) B6(x)

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

B3(x) B4(x) B7(x) B8(x)

�
�

�
�

�
�
�
�

B9(x) B10(x)

Fig. 4.1. Hierarchy of MARS basis functions

training dataset by minimizing

Rα(f) = R′(f) + α|Lf |.
Note that on the right-hand side an independent data size has to be used
in practice for the evaluation of R(f). For an N -dimensional space Ω, an
approximation defined by a tree with M leaves and N data points, this
algorithm does require O(nNM) operations (Friedman 1991). Thus the
procedure is scalable, that is, linear in the number of observations N .

4.2. Regression splines

Better approximation properties are obtained by piecewise polynomial func-
tions. They are used in the MARS algorithm (multivariate adaptive re-

gression splines): see Friedman (1991). Instead of explicitly generating a
hierarchy of domains, MARS generates a hierarchy of basis functions that
implicitly define a hierarchy of domains. An example of a basis function
hierarchy is displayed in Figure 4.1. At the root of the tree is the constant
basis function B0 ≡ 1. At each ‘partitioning’ step two new children are
generated:

Bchild1 = Bparent(x)(xj − ξ)+ and Bchild2 = Bparent(x)(−xj + ξ)+,

where (z)+ denotes the usual truncated linear function. It is equal to z for
z > 0 and equal to zero if z < 0. The parent, the variable xj and the value
ξ are all chosen such that the sum of squared residuals is minimized.

340 M. Hegland

While each node can have several children, there are some rules for the
generation of this tree:

• The depth of the tree is bounded, typically by a value of 5 or less. This
is thought to be sufficient for practical purposes (Friedman 1991), and
the bound is important for controlling the computational work required
for the determination of the function values.

• Each variable xj can only appear once in a factor of a basis function
Bk. This guarantees that the function is piecewise multilinear.

The partitioning of the domain is defined such that on each partition the
function is multilinear. Thus this partitioning does not have the same in-
terpretative value as in the case of classification and is not recovered by the
algorithm. However, the MARS method generates an ANOVA decomposi-
tion.

The computational complexity of the algorithm, some clever updating
ideas having been applied, is shown in Friedman (1991) to be O

(

dNM4
max/L

)

where d is the dimension, N the number of data points, Mmax the number
of basis functions considered – some might not be used later because of
pruning – and L is the number of levels of the tree. Thus the algorithm is
scalable, that is, the complexity is proportional to the data size. However,
the proportionality constant can be very large owing to the dependence on
O
(

M4
)

, which limits the number of basis functions that can be used, and
thus limits the approximation power of this approach. Another limitation
is due to the fact that a greedy algorithm is used and the choice of basis
functions may not be a global optimum. One problem with the usage of
truncated powers is stability. Bakin, Hegland and Osborne (1998) suggest a
variant of the MARS algorithm where the truncated powers are replaced by
a hierarchy of B-splines. In addition, a parallel implementation is provided.

4.3. Additive models

In the case where the tree of basis functions generated by MARS contains
two levels, namely, the root B0 ≡ 0 and its children, a model of the following
form is generated:

f(x1, . . . , xd) = f0 +
d

∑

i=1

fi(xi).

The univariate components fi of this additive model are piecewise linear
in the case of MARS. Other commonly used additive models are based on
smoothing splines and local parametric (polynomial) approximations (Hastie
and Tibshirani 1990). A unified treatment for all these approximations re-
veals that in all cases additive models are scalable with respect to data size

Data mining techniques 341

and, like the multivariate regression splines, conquer the curse of dimension-
ality. While additive models are computationally very competitive they also
show good performance in practical applications. Like other regression mod-
els they provide good classification methods, especially if logistic regression
is used.

If the probability distribution of the random variables (X1, . . . , Xd, Y)
which model the observations is known, the best (in the sense of expected
squared error) approximation for the additive model is obtained when

fi(xi) = E

(

Y − f0 −
d

∑

k=1
k �=i

fk(Xk) | Xi = xi

)

(4.1)

and f0 = E(Y). These equations do not have a unique solution, but unique-
ness can easily be obtained if we introduce constraints like E(fi(Xi)) = 0.

In practical algorithms, the estimates are approximated by smooth func-

tions. Let fi be the vector of function values
(

fi(x
(k)
i)

)n

k=1
. Furthermore, let

Si be the matrix representing the mapping between the data and the smooth

fi. The matrix Si depends on the observations x
(1)
i , . . . , x

(n)
i . Replacement

of the estimation operator by the matrix Si in equation (4.1) leads to

I S1 · · · S1

S2 I · · · S2
...

...
...

Sd Sd · · · I

f1
f2
...
fd

=

S1y
S2y

...
Sdy

.

If the eigenvalues of the Si are in (0, 1) and this linear system of equations is
nonsingular, it can be seen that the Gauss–Seidel algorithm for this system
converges. This method of determining the additive model is the backfitting

algorithm (Hastie and Tibshirani 1990): it has complexity O(Nqd), where
q denotes the number of iteration steps. The backfitting algorithm is very
general and, in fact, is used even for nonlinear smoothers. For very large
datasets, however, the algorithm becomes very costly – even though it is
scalable in the data size and does not suffer from the curse of dimensionality
– because it needs to revisit the data qd times.

The high cost of the solution of the previous linear system of equations
resulted from the large size of its matrix. Smaller alternative systems are
available for particular cases of smoothers Si. For example, in the case of
regression splines we can work with the system of normal equations. Con-
sider the case of fitting with piecewise multilinear functions. These functions
include the ones used in MARS and are, on each subdomain, linear combin-
ations of products xj1 · · ·xjk where every variable xj occurs at most once.

342 M. Hegland

The basis functions of the full space of piecewise multilinear functions are
products of hat functions of the form b1(x1) · · · bd(xd). For the full space,
the normal matrix of the least squares fitting problem becomes sparse with
nonzeros on 3d of the diagonals. But the matrix is huge, being of order md

if each of the d dimensions is discretized by m hat functions. This shows
the computational advantage of the additive models where the dimension of
the approximating function space is only md.

4.4. Radial basis functions

In order to explore further the challenge posed by the curse of dimensionality,
we will investigate radial basis function approximation. In recent years,
radial basis functions have received a lot of attention both theoretically and
in applications. One of their outstanding features is that they are able to
approximate high-dimensional functions very effectively. Thus they seem to
be able to overcome the curse of dimensionality. In the case of real attributes
x ∈ R

d a radial basis function is of the form

f(x) =

N
∑

i=1

ci ρ(‖x− x(i)‖) + p(x),

where x(i) are the data points. Examples of the function ρ include Gauss-
ians ρ(r) = exp(−αr2), powers and thin plate splines ρ(r) = rβ and ρ(r) =
rβ ln(r) (for even integers β only), multiquadrics ρ(r) = (r2 + c2)β/2 and
others. The function p(x) is typically a polynomial of low degree and in
many cases it is zero. The radial basis function approach may be generalized
to metric spaces where the argument of ρ is replaced by the distance d(x, xi).
Reviews of radial basis function research can be found in Dyn (1989), Powell
(1992), and Buhmann (1993). Existence, uniqueness and approximation
properties have been well studied.

The evaluation of f(x) requires the computation of the distances between
x and all the data points x(i). Thus the time required to compute one func-
tion value is O(dN); the complexity is linear in the number of attributes d
and the curse of dimensionality has been overcome. However, if many func-
tion values need to be evaluated, this is still very expensive. Fast methods
for evaluation of radial basis functions have been studied in Beatson, Good-
sell and Powell (1996), Beatson and Light (1997), Beatson and Newsam
(1992), and Beatson and Powell (1994). For example, a multipole method
that reduces the complexity to O((m + N) log(N)) has been suggested in
Beatson and Newsam (1992) for the evaluation of f(x) for m values of x.
For data mining applications, which have very large N , even this is still too
expensive. What is required is an approximation for which the evaluation is
independent of the data size N and does not suffer from the curse of dimen-
sionality. In the following, we will revisit the determination of the function

Data mining techniques 343

from the data points and see how the geometry of high-dimensional spaces
influences the computational costs.

The vector of coefficients of the radial basis functions c = (c1, . . . , cN)
and the vector of coefficients of the polynomial term d = (d1, . . . , dm) are
determined, in the case of smoothing, by a linear system of equations of the
form

[

A + αI P
P T 0

] [

c
d

]

=

[

y
0

]

. (4.2)

The matrix A =
[

ρ(‖x(i) − x(j)‖)
]

i,j=1...n
has almost no zero elements for the

case of thin plate splines and has to be treated as a dense matrix. However,
the influence of the data points is local and it is mainly the observed points
close to x that influence the value of f(x). This locality is shared with nearest
neighbour approximation techniques. However, in higher dimensions, points
get more sparse. For example, Friedman (1994) observes that the expected
distance of the nearest neighbour in a d-dimensional hypercube grows like
O
(

N−1/d
)

with the dimension and that large numbers of data points are
required to maintain a uniform coverage of the domain. In particular, a
constant distance between a point and its nearest neighbour is obtained if
log(N) = O(d), that is, the number of points has to grow exponentially with
the dimension. This is just another aspect of the curse of dimensionality.

If the function to be approximated is smooth enough, the number of points
available may be sufficient even in high dimensions. But a computational dif-
ficulty appears which is related to the concentration of measure phenomenon
(Talagrand 1996, Milman and Schechtman 1986, Ball 1997). The concen-
tration of measure basically tells us that in high dimensions the neighbours
of any point are concentrated close to a sphere around that point.

The effect of this on the computation is severe as the determination of
a good approximant will require visiting a large number of neighbouring
points for each evaluation point. In an attempt to decrease the compu-
tational work, a compactly supported radial basis function may be used.
However, the support will have to be chosen such that, for a very large
number of points, the values of the radial basis function ρ(‖x(i) −x(j)‖) will
be nonzero. Thus the linear system of equations (4.2) will have a substantial
number of nonzeros which will ultimately render the solution computation-
ally infeasible. This, however, does not mean that radial basis functions
cannot be used in data mining. In fact, it has been found (Powell 1992)
that the approximation order of radial basis functions increases with the
dimension. Further, there are new iterative algorithms that can be used
to solve (4.2), sometimes in O(n log n) operations (Faul and Powell 1999).
Therefore there is some evidence that radial basis functions do not suffer
from the curse of dimensionality, although further work remains to be done.

344 M. Hegland

5. Cluster analysis

Clustering refers to the task of grouping objects into classes of similar ob-
jects (Kaufman and Rousseeuw 1990). Cluster analysis is important in busi-
ness, for the identification of customers with similar interests for which sim-
ilar solutions may be found (market segmentation: see Berry and Linoff
(1997, p. 47)), but also in science, where taxonomies of animals, stars or
archaeological artefacts build the foundations for the understanding of evol-
ution and development (Gordon 1981, p. 1). Cluster analysis has a long
history both in statistical analysis and machine learning (Berry and Linoff
1997, Berson and Smith 1997, Gordon 1981, Hartigan 1975, Ripley 1996).
Clusters of similar objects form one type of information discovered in data
mining and can lead to new insights and suggest further actions. However,
in order to be applicable for data mining, clustering algorithms need to have
the following properties (see Han and Kamber (2001)):

• scalable in order to work on large and growing data sizes,

• capable of handling a large number of attributes of various types and
complex data,

• capable of handling noisy data,

• insensitive to the ordering of the data, and

• able to represent clusters of arbitrary shapes.

The result of a cluster analysis is one or several subsets Ω′ ⊂ Ω of the set of
all possible observations. Many clustering algorithms partition the domain
Ω into (possibly disjoint) subdomains Ωi such that

Ω =
⋃

Ωi.

In data mining explorations, clustering is often combined with classification
and rule detection in a 3-step procedure:

(1) determination of clusters,

(2) induction of a decision tree to predict the cluster label,

(3) extraction of rules relating to the clusters.

In order to find clusters, the dissimilarity or similarity of transactions or
objects need to be assessed and most commonly, this is done with metrics
on feature vectors:

• Minkowski distances (including Euclidean and Manhattan), or p-norms,
for real-valued features, that is,

ρ(ω1, ω2) =

(

d
∑

i=1

|Xi(ω1) −Xi(ω2)|q
)1/q

Data mining techniques 345

• simple matching for categorical (and binary) features, that is,

ρ(ω1, ω2) = |{Xi : Xi(ω1) �= Xi(ω2)}| .

Often the distances are normalized or weighted differences are used. The
four main types of clustering algorithm used in data mining are as follows.

Partitioning methods. If the number of clusters is known in advance, the
data is partitioned into sets of similar data records. Starting with some
initial partitioning (often random), data points are moved between
clusters until the differences of objects within the clusters is small and
the difference between elements of different clusters is large.

Hierarchical clustering methods. These methods provide a hierarchical
partitioning of the data. Clusters are determined from the hierarchical
partitioning.

There are two basic approaches. In the agglomerative approach an
initial partitioning is given by first identifying each separate data point
with one cluster, and then repeatedly joining clusters together to form
successively larger clusters until only one cluster is left.

In the divisive approach all points are first assumed to be part of one
big cluster. The partitions are then successively divided into smaller
clusters until every point forms one separate cluster.

Density-based methods. Neighbouring elements are joined together us-
ing a local density measure. Often, only one scan through the database
is required for this algorithm.

Model-based methods. Each cluster is modelled, for instance by a simple
distribution function, and the best fit of these models to the data is
determined.

Many clustering algorithms have an O
(

N2
)

complexity, which results from
the fact that the distances between all the points are computed. There are
two major approximation techniques that address this computational prob-
lem: sampling (Kaufman and Rousseeuw 1990), where a subset of the data
is selected to perform the algorithm, and binning, which is based on discret-
ization of the domain (Wang, Yang and Muntz 1997). In both approaches
the full dataset may be used for the evaluation of the result, particularly
since this evaluation often only requires O(N) complexity. Both algorithms
can lead to scalable algorithms, if, in the first case, only O

(√
N
)

elements
are chosen from the sample, and, in the second case, the bin sizes are not
chosen to be too large and the dimension is low. Note that binning be-
comes less useful in higher dimensions, because it suffers from the curse of
dimensionality.

346 M. Hegland

5.1. Partitioning techniques

The aim of the clustering is to find subsets which are more pure than the
original set in the sense that, on average, their elements are much more
similar than the elements of the original domain. A partition Ω1, . . . ,Ωk is
represented by the centroids z1, . . . , zk such that

x ∈ Ωi ⇐⇒ ρ(x, zi) ≤ ρ(x, zj), i, j = 1, . . . , k.

The centroids define an impurity measure of the form

J(z1, . . . , zp) =
1

N

k
∑

i=1

∑

x(j)∈Ωi

ρ(x(j), zi) (5.1)

=
1

N

N
∑

j=1

min
1≤i≤k

ρ(x(j), zi). (5.2)

For simplicity we identify ω with the feature vector x here.
The two types of algorithm for partitioning differ in the way they estim-

ate the centroid. In the k-means algorithm, the mean of the (real-valued)
observations in Ωi is used:

zi =
1

Ni

∑

x(j)∈Ωi

x(j),

where Ni denotes the number of data points in Ωi. One disadvantage of the
k-means approach is that the mean cannot be guaranteed to be close to any
data point at all and the data are limited to real vectors. An alternative is
the k-medoid approach, where the centroid is chosen to be the most central
element of the set, i.e.,

zi = x(si)

such that

∑

x(j)∈Ωi

ρ(x(j),x(si)) ≤
∑

x(j)∈Ωi

ρ(x(j),x(m)), for all x(m) ∈ Ωi.

k-means algorithm

The k-means algorithm (see Algorithm 3) was discussed in MacQueen (1967).
It can be seen that the k-means algorithm cannot increase the function J ,
and, in fact, if any clusters are changed, J is reduced. As J is bounded from
below it converges, and as a consequence the algorithm converges. It is also
known that the k-means will always converge to a local minimum (Bottou
and Bengio 1995). The k-means algorithm may be viewed as a variant of
the EM algorithm (McLachlan and Krishnan 1996).

Data mining techniques 347

Algorithm 3 k-means algorithm

Select k arbitrary data points z1, . . . , zk.
repeat

Ωi := {x(j) : ρ(x(j), zi) ≤ ρ(x(j), zs), s = 1, . . . , p }
zi := 1

|Ωi|

∑

x(j)∈Ωi
x(j).

until the zi converge

Dhillon and Modha (2000) propose a parallel k-means algorithm. They
also provide a careful analysis of the algorithm’s computational complexity.
There are two major steps in the algorithm: the determination of the dis-
tances between all the points, and the recalculation of the centroid. The
determination of all the Euclidean distances between the N points and the
k-cluster means requires 3Nkd floating point operations (one subtraction,
square and one addition per component of all pairs). Finding the minimum
for each point requires a total of kN comparisons; then we need to compute
the new average for each cluster, which requires nd additions and kd divi-
sions. In data mining the cost is usually dominated by the determination of
all the distances, and thus the time is (Dhillon and Modha 2000)

T = O
(

NkdI
)

,

where I is the number of iterations.
For the parallel algorithm (shared nothing), the data are initially distrib-

uted over the discs of all the processors. Then each processor computes the
distances of its elements to all cluster centres. This is done in parallel and
so the most expensive computation gets a parallel speed-up of a factor of
p (the number of processors). After the sums of all the elements are com-
puted on all the processors, these sums are communicated, which requires
an all-to-all communication with volume dk per iteration per processor. If
this can be done in parallel, the time required is O(dkIτ), where the time
τ for reduction is typically of O

(√
p
)

. Thus the total time is

O
(

NkdI/p
)

+ O
(

dkI
√
p
)

.

Now the communication time is small compared to the computation time
for large problems, that is, if

N ≫ p3/2κ,

where κ is the ratio of communication time to computation time. Typically,
p is in the order of 100 and κ around 1000, thus data sizes of a million do
qualify. A scalable k-means method has been discussed in Bradley, Fayyad
and Reina (1998).

348 M. Hegland

k-medoids algorithm

Determining a set of elements x(js) which minimize J(x(j1), . . . ,x(jk)) defines
a discrete optimization problem. The search graph of this problem has as
nodes all possible sets of centroids, i.e., all possible

(

N
k

)

combinations of the

points x(i). The edges of the search graph join any two sets of centroids
{x(j1), . . . ,x(jk)} and {x(i1), . . . ,x(ik)} if they only differ in one centroid.
The k-medoids algorithm starts at a random node and moves to the adjacent
node for which the reduction in impurity is maximal. This descent approach
requires the determination of J for all adjacent nodes in order to determine
the best direction. The algorithm finds a local minimum.

The algorithm stores all the distances between data points and all the
centres. From this the minimal distance between any data point and the
centres can be determined in O(k(N − k)) comparisons. Thus the com-
plexity of the algorithm is O(k2(N − k)2). However, for many data points
the minimum can actually be found without comparing the distance between
the new centroid and the data points and all the earlier computed distances.
This is based on the following simple observation.

Lemma 12. If ρ1, . . . , ρk+1 ∈ R satisfy ρ1 > min(ρ1, . . . , ρk) or ρk+1 ≤ ρ1,
we have

min(ρ2, . . . , ρk+1) = min(min(ρ1, . . . , ρk), ρk+1).

Proof. The conditions on ρ1 imply that including ρ1 does not change the
minimum in both cases, that is,

min(ρ2, . . . , ρk+1) = min(ρ1, . . . , ρk+1). �

Applying this to the k-medoid algorithm, we see that each term in the
sum for J does have a minimum over all the centroids. If one centroid is re-
placed by another, say, centroid 1 is replaced by centroid k+1, then we have
to compute the minimum min(ρ(x(i), z2), . . . , ρ(x

(i)zk+1)). This can be com-
puted from the previously determined minimum over the original centroids
using Lemma 12, except in the case, not covered by the lemma, for which
the centroid is just the one that is replaced, and the distance between the
new centroid and the data point is larger than the distance between the re-
moved centroid and the data point. This algorithm is the PAM (partitioning
around medoids) algorithm: see Kaufman and Rousseeuw (1990).

The complexity is further reduced by repeated clustering on a random
sample of the data and always selecting the cluster with the lowest value of J .
This is implemented in the CLARA (clustering large applications) algorithm
and leads to an algorithm that is scalable in the number of data points N .
However, there are still very many search directions and a random selection
is used in the CLARANS (clustering large applications based on randomized

Data mining techniques 349

search) algorithm (Ng and Han 1994). This CLARANS algorithm is one of
the early developments in clustering for data mining applications.

5.2. Hierarchical clustering

Hierarchical clustering algorithms transform a set of points with an associ-
ated dissimilarity metric into a tree structure known as a dendrogram. The
nodes of the dendrogram correspond to sets of data points: for example, the
leaves are single points. Like decision trees, dendrograms split the datasets
at each node and the edges of the dendrogram correspond to set inclusions.

The two broad classes of hierarchical clustering algorithms are agglomer-

ative, which start with single points and join them together whenever they
are close, whereas divisive algorithms move from the top down and break
the clusters up when they are dissimilar.

In contrast to decision trees, where the impurity of the nodes is determined
through the value of a class attribute, in clustering the dissimilarity measure
provides this measure of impurity.

An agglomerative hierarchical clustering algorithm consists of the follow-
ing loop:

Initialize all points as single clusters
Determine all the dissimilarities between the clusters
while There is more than one cluster do

Merge the two clusters with the smallest dissimilarity
Update the dissimilarities

end while

It is important to assess the dissimilarity or impurity which is introduced
through the joining of two partitions Ω1 and Ω2. The single link (or nearest
neighbour) technique defines the dissimilarity as

ρ(A,B) = min{ρ(x, y) : x ∈ Ω1, y ∈ Ω2}, for two partitions Ω1 and Ω2.

Other measures are used and they have a big effect on the computational
load.

After the full generation of the dendrogram, it is pruned down to a desired
level. The single link algorithm computes all the distances but does not
require us to store them all. The classical SLINK (Sibson 1973) algorithm
requires O(N2) time and O(N) space.

In the case of a database distributed over p processors, Johnson and
Kargupta (2000) present an algorithm for single-link clustering which has
O(pN2) time and O(pN) space complexity. The communication costs of the
algorithm are O(N). The algorithm has the following three steps:

Apply the hierarchical clustering algorithm at each site.
Transmit the local dendrograms to the facilitator site.
Generate the global dendrogram.

The local dendrograms are communicated together with the distances of

350 M. Hegland

each partition. Then an upper bound on the distance is obtained as the
sum of the distances of the shortest path in each partition. This is an upper
bound on the actual distance. We have

ρ(x1, x2) =

√

√

√

√

√

p
∑

j=1

∑

i∈Pj

(x1,i,j − xi,2,j)2

 ≤

√

√

√

√

p
∑

j=1

(distdendrogram j(x1, x2)).

Basically, it uses the distance defined in the actual dendrograms. The mer-
ging algorithm is costly but the main advantage is that not all the data
need to be communicated to one processor. For a parallel implementation
of SLINK see Olson (1995).

There is a large variety of data mining clustering techniques including
BIRCH (Zhang, Ramakrishnan and Livny 1996) and CURE (Guha, Rastogi
and Shim 1998). A further class of clustering algorithms is based on density
considerations, both using parametric models (Cheeseman and Stutz 1996)
and non-parametric approaches in DBSCAN (Ester, Kriegel, Sander and
Xu 1996).

Acknowledgement

The author would like to thank the editors and Brad Baxter (Imperial Col-
lege, London), who carefully read the paper.

REFERENCES

R. Agrawal, T. Imielinski and T. Swami (1993), Mining association rules between
sets of items in large databases, in Proc. ACM–SIGMOD Conf. Management

of Data, ACM Press, pp. 207–216.

R. Agrawal and R. Srikant (1995), Mining sequential patterns, in Proc. 11th Int.

Conf. Data Engineering, IEEE CS Press, Los Alamitos, CA, pp. 3–14.

S. Bakin, M. Hegland and M. Osborne (1998), Can MARS be improved
with B-splines?, in Computational Techniques and Applications: CTAC97

(B. J. Noye, M. D. Teubner and A. W. Gill, eds), World Scientific, pp. 75–82.

K. Ball (1997) ‘An elementary introduction to modern convex geometry’, in Flavors

of Geometry (S. Levy, ed.), Cambridge University Press.

R. K. Beatson, G. Goodsell and M. J. D. Powell (1996), On multigrid techniques
for thin plate spline interpolation in two dimensions, in The Mathematics of

Numerical Analysis (Park City, UT, 1995), Vol. 32 of Lectures in Appl. Math.,
American Mathematical Society, Providence, RI, pp. 77–97.

R. K. Beatson and W. A. Light (1997), Fast evaluation of radial basis functions:
Methods for two-dimensional polyharmonic splines, IMA J. Numer. Anal., 17
343–372.

R. K. Beatson and G. N. Newsam (1992), Fast evaluation of radial basis functions, I,
Comput. Math. Appl., 24 7–19.

Data mining techniques 351

R. K. Beatson and M. J. D. Powell (1994), An iterative method for thin plate
spline interpolation that employs approximations to Lagrange functions, in
Numerical Analysis 1993 , Vol. 303 of Pitman Res. Notes Math. Ser., Longman
Sci. Tech., Harlow, pp. 17–39.

G. Bell and J. N. Gray (1997), The revolution yet to happen, in Beyond Calculation

(P. J. Denning and R. M. Metcalfe, eds), Springer, pp. 5–32.
E. A. Bender (1996), Mathematical Methods in Artificial Intelligence, IEEE CS

Press, Los Alamitos, CA.
M. J. A. Berry and G. Linoff (1997), Data Mining Techniques: For Marketing,

Sales and Customer Support, Wiley.
A. Berson and S. J. Smith (1997), Data Warehousing, Data Mining, and OLAP,

McGraw-Hill Series on Data Warehousing and Data Management, McGraw-
Hill, New York.

H.-H. Bock and E. Diday, eds (2000), Analysis of Symbolic Data, Springer.
L. Bottou and Y. Bengio (1995), Convergence properties of the k-means algorithm,

in Adv. in Neural Info. Proc. Systems, Vol. 7 (G. Tesauro and D. Touretzky,
eds), MIT Press, Cambridge, MA, pp. 585–592.

P. Bradley, U. Fayyad and C. Reina (1998), Scaling clustering algorithms to large
databases, in Proc. 4th Int. Conf. KDD , pp. 9–15.

L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone (1984), Classification

and Regression Trees, Wadsworth International Group, Blemont, CA.
S. Brin et al. (1997), Dynamic itemset counting and implication rules for market

basket data, in Proc. ACM–SIGMOD Int. Conf. Management of Data, ACM
Press, New York, pp. 255–264.

M. D. Buhmann (1993), New developments in the theory of radial basis function
interpolation, in Multivariate Approximation: From CAGD to Wavelets (San-
tiago, 1992), Vol. 3 of Ser. Approx. Decompos., World Scientific, River Edge,
NJ, pp. 35–75.

P. Cheeseman and J. Stutz (1996), Bayesian classification (Autoclass): Theory and
results, in Advances in Knowledge Discovery and Data Mining (U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds), AAAI/MIT Press,
Cambridge, MA, pp. 153–180.

M.-S. Chen, J. Han and P. S. Yu (1996), Data mining: An overview from a database
perspective, IEEE Trans. Knowledge and Data Engineering, 8 866–883.

S. Clearwater and F. Provost (1990), Rl4: A tool for knowledge-based induction.
W. W. Cohen (1995), Fast effective rule induction, in Proc. 12th Int. Conf. Machine

Learning, Morgan Kaufmann, pp. 115–123.
C. J. Date (1995), An Introduction to Database Systems, Addison-Wesley, Reading,

MA.
L. Devroye, L. Györfi and G. Lugosi (1996), A Probabilistic Theory of Pattern

Recognition, Vol. 31 of Applications of Mathematics, Springer.
I. S. Dhillon and D. S. Modha (2000), A data-clustering algorithm on distributed

memory multiprocessors, in Large-Scale Parallel Data Mining (M. J. Zaki and
C.-T. Ho, eds), Springer, pp. 245–260.

A. J. Dobson (1990), An Introduction to Generalized Linear Models, Chapman and
Hall, London. Second edn of Introduction to Statistical Modelling.

352 M. Hegland

P. Domingos and M. Pazzani (1997), On the optimality of the simple Bayesian
classifier under zero–one loss, Machine Learning, 29 103–130.

G. Dong and J. Li (1999), Efficient mining of emerging patterns: Discovering trends
and differences, in Proc. 1999 Int. Conf. Knowledge Discovery and Data Min-

ing (KDD’99), ACM Press, pp. 43–52.
R. O. Duda and P. E. Hart (1973), Pattern Classification and Scene Analysis,

Wiley, New York.
N. Dyn (1989), Interpolation and Approximation by Radial and Related Functions,

Vol. 1, Academic Press, pp. 211–234.
M. Ester, H.-P. Kriegel, J. Sander and X. Xu (1996), A density-based algorithm

for discovering clusters in large spatial databases, in Proc. 1996 Int. Conf.

Knowledge Discovery and Data Mining (KDD’96), AAAI Press, pp. 226–231.
A. C. Faul and M. J. D. Powell (1999) Proof of convergence of an iterative technique

for thin plate spline interpolation in two dimensions, Adv. Comput. Math. 11
183–192.

J. H. Friedman (1991), Multivariate adaptive regression splines, The Annals of

Statistics, 19 1–141.
J. H. Friedman (1994), Flexible metric nearest neighbor classification, Technical

Report, Department of Statistics, Stanford University.
N. Friedman, D. Geiger and M. Goldszmidt (1997), Bayesian network classifiers,

Machine Learning, 29 131–163.
G. Golub, M. Heath and G. Wahba (1979), Generalized cross validation as a method

for choosing a good ridge parameter, Technometrics, 21 215–224.
A. D. Gordon (1981), Classification, Vol. 82 of Monographs on Statistics and Applied

Probability, Chapman and Hall, London.
S. Guha, R. Rastogi and K. Shim (1998), CURE: An efficient clustering algorithm

for large databases, in Proc. ACM–SIGMOD Int. Conf. Management of Data,
ACM Press, pp. 73–84.

L. Hall, N. Chawla and K. Bowyer (1998), Decision tree learning on very large data
sets, in Int. Conf. Systems, Man and Cybernetics, IEEE Press, pp. 2579–2584,

L. O. Hall, N. Chawla, K. W. Bowyer and W. P. Kegelmayer (2000), Learning rules
from distributed data, in Large-Scale Parallel Data Mining (M. J. Zaki and
C.-T. Ho, eds), Springer, pp. 211–220.

J. Han and M. Kamber (2001), Data Mining, Concepts and Techniques, Morgan
Kaufmann.

J. A. Hartigan (1975), Clustering Algorithms, Wiley Series in Probability and Math-
ematical Statistics, Wiley, New York/London/Sydney.

T. J. Hastie and R. J. Tibshirani (1990), Generalized Additive Models, Vol. 43 of
Monographs on Statistics and Applied Probability, Chapman and Hall.

D. Heckerman, D. Geiger and D. E. Chickering (1995), Learning Bayesian networks,
Machine Learning, 20 197–243.

G. H. John and P. Langley (1995), Estimating continuous distributions in Bayesian
classifiers, in Proc. 11th Conference on Uncertainty in Artificial Intelligence

(P. Besnard and S. Hanks, eds), Morgan Kaufmann, pp. 338–345.
E. L. Johnson and H. Kargupta (2000), Collective, hierarchical clustering from

distributed heterogeneous data, in Large-Scale Parallel Data Mining (M. J.
Zaki and C.-T. Ho, eds), Springer, pp. 221–244.

Data mining techniques 353

L. Kaufman and P. J. Rousseeuw (1990), Finding Groups in Data: An Introduction

to Cluster Analysis, Wiley, New York.
P. Langley, W. Iba and K. Thompson (1992), An analysis of Bayesian classifiers, in

Proc. 10th Nat. Conf. Artificial Intelligence (W. Swartout, ed.), AAAI Press,
pp. 223–228.

P. Langley and S. Sage (1994), Induction of selective Bayesian classifiers, in Proc.

10th Conf. Uncertainty in Artificial Intelligence (R. L. Mantaras and D. Poole,
eds), Morgan Kaufmann, pp. 399–406.

P. Langley and S. Sage (1999), Tractable average-case analysis of naive Bayesian
classifiers, in Proc. 16th Int. Conf. Machine Learning, Bled, Slovenia, Morgan
Kaufmann, pp. 220–228,

B. Lent, A. Swami and J. Widom (1997), Clustering association rules, in Proc.

1997 Int. Conf. Data Engineering (ICDE’97), IEEE CS Press, pp. 220–231.
J. Li, G. Dong and K. Ramamohanrarao (2000), Making use of the most expressive

jumping emerging patterns for classification, in Proc. 2000 Pacific–Asia Conf.

Knowledge Discovery and Data Mining (PAKDD’00), Springer, pp. 220–232.
B. Liu, W. Hsu and Y. Ma (1998), Integrating classification and association rule

mining, in Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining

(KDD’98), AAAI Press, pp. 80–86.
J. MacQueen (1967), Some methods for classification and analysis of multivariate

observations, in Proc. 5th Berkeley Sympos. Math. Statist. and Probability

(1965/66), Vol. I: Statistics, University of California Press, Berkeley, CA, pp.
281–297.

G. J. McLachlan and T. Krishnan (1996), The EM Algorithm and Extensions,
Wiley.

H. Mannila, H. Toivonen and A. I. Verkamo (1995), Discovering frequent episodes
in sequences, in Proc. 1st Int. Conf. Knowledge Discovery Databases and Data

Mining (KDD’95), AAAI Press, pp. 210–215.
H. Mannila and H. Toivonen (1996), Discovering generalized episodes using minimal

occurrences, in Proc. 2nd Int. Conf. Knowledge Discovery Databases and Data

Mining (KDD’96), AAAI Press, pp. 146–151.
D. Meretakis and B. Wüthrich (1999), Extending naive Bayes classifiers using long

itemsets, in Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining

(KDD’99), ACM Press, pp. 165–174.
V. D. Milman and G. Schechtman (1986) Asymptotic Theory of Finite Dimensional

Normed Spaces, Vol. 1200 of Lecture Notes in Mathematics, Springer.
T. M. Mitchell (1997), Machine Learning, McGraw-Hill.
S. Morishita (1998), On classification and regression, in Proc. 1st Int. Conf. Dis-

covery Science, Vol. 1532, Springer, pp. 40–57.
S. Morishita and A. Nakaya (2000), Parallel branch-and-bound graph search for

correlated association rules, in Large-Scale Parallel Data Mining (M. J. Zaki
and C.-T. Ho, eds), Springer, pp. 127–144.

R. Ng and J. Han (1994), Efficient and effective clustering methods for spatial data
mining, in Proc. 20th Int. Conf. Very Large Data Bases, Morgan Kaufmann,
pp. 144–155.

T. Oates, M. D. Schmill, D. Jensen and P. R. Cohen (1997), A family of algorithms

354 M. Hegland

for finding temporal structure in data, in Preliminary Papers of the 6th Int.

Workshop on AI and Statistics, Society for Artificial Intelligence and Statist-
ics, pp. 371–378.

C. Olson (1995), Parallel algorithms for hierarchical clustering, Parallel Computing,
8 1313–1325.

J. S. Park, M. S. Chen and P. S. Yu (1995a), An effective hash-based algorithm for
mining association rules, in Proc. 1995 ACM–SIGMOD Int. Conf. Manage-

ment of Data (SIGMOD’95), ACM Press, pp. 175–186.
J. S. Park, M. S. Chen and P. S. Yu (1995b), Efficient parallel data mining for

association rules, in Proc. 4th Int. Conf. Information and Knowledge Man-

agement, ACM Press, pp. 31–36.
M. J. D. Powell (1992), The theory of radial basis function approximation in 1990,

in Advances in Numerical Analysis, Vol. II (Lancaster, 1990), Oxford Sci.
Publ., Oxford University Press, New York, pp. 105–210.

F. Provost, J. Aronis and B. Buchanan (2000), Rule-space search for knowledge-
based discovery, CIIO Working Paper Number #IS 99-0012, Stern School of
Business, New York University, NY. Available from:
http://www.stern.nyu.edu/ fprovost/

J. R. Quinlan (1986), Induction of decision trees, Machine Learning, 1 81–106.
J. R. Quinlan (1987), Generating production rules from decision trees, in Proc. 10th

Int. Conf. Artificial Intelligence (IJCAI-87), Morgan Kaufmann, pp. 304–307.
J. R. Quinlan (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.
N. Ramakrishnan and A. Y. Grama (1999), Data mining: From serendipity to

science, Computer, 32(8) 34–37.
S. Ramaswamy, S. Mahajan and A. Silbershatz (1998), On the discovery of inter-

esting patterns in association rules, in Proc. 24th Int. Conf. Very Large Data

Bases, Morgan Kaufmann, pp. 368–379.
B. D. Ripley (1996), Pattern Recognition and Neural Networks, Cambridge Univer-

sity Press, Cambridge.
A. Savasere, E. Omieski and S. Navanthe (1995), An efficient algorithm for mining

association rules in large databases, in Proc. 21st Int. Conf. Very Large Data

Bases, Morgan Kaufmann, pp. 432–444.
R. Segal and O. Etioni (1994), Learning decision lists using homogeneous rules, in

Proc. 12th Nat. Conf. Artificial Intelligence, AAAI Press, pp. 619–625.
J. Shafer, R. Agrawal and M. Mehta (1996), SPRINT: A scalable parallel classifier

for data mining, in Proc. 1996 Int. Conf. Very Large Data Bases (VLDB’96),
Morgan Kaufmann, pp. 544–555.

T. Shintani and M. Kitsuregawa (2000), Parallel generalized association rule mining
on large scale PC clusters, in Large-Scale Parallel Data Mining (M. J. Zaki
and C.-T. Ho, eds), Springer, pp. 145–160.

R. Sibson (1973), SLINK: An optimally efficient algorithm for the single-link cluster
method, The Computer Journal, 16 30–34.

A. Silberschatz and A. Tuzhilin (1996), What makes patterns interesting in know-
ledge discovery systems, IEEE Trans. Knowledge and Data Engineering, 8
970–974.

R. Srikant and R. Agrawal (1995), Mining generalized association rules, in Proc.

1995 Int. Conf. Very Large Data Bases (VLDB’95), pp. 407–419.

Data mining techniques 355

R. Srikant and R. Agrawal (1996a), Mining quantitative association rules in large
relational tables, in Proc. 1996 ACM–SIGMOD Int. Conf. Management of

Data (SIGMOD’96), ACM Press, pp. 1–12.
R. Srikant and R. Agrawal (1996b), Mining sequential patterns: Generalizations and

performance improvements, in 5th Int. Conf. Extending Database Technology,
Vol. 1057 of Lecture Notes in Computer Science, Springer, pp. 3–17.

M. Talagrand (1996), A new look at independence, Ann. Prob., 23 1–37.
H. Toivonen (1996), Sampling large databases for association rules, in Proc. 22nd

Int. Conf. Very Large Data Bases, Morgan Kaufmann, pp. 134–145.
W. Wang, J. Yang and R. Muntz (1997), STING: A statistical information grid

approach to spatial data mining, in Proc. 1997 Int. Conf. Very Large Data

Bases (VLDB’97), Morgan Kaufmann, pp. 186–195.
G. Webb (2000), Efficient search for association rules, in Proc. of the 6th ACM–

SIGKDD Int. Conf. Knowledge Discovery and Data Mining, ACM Press,
pp. 99–107.

G. Williams (1990), Inducing and combining multiple decision trees, PhD thesis,
Australian National University.

M. J. Zaki (1998), Efficient enumeration of frequent sequences, in 7th Int. Conf.

Information and Knowledge Management, ACM Press, pp. 68–75.
M. J. Zaki (2000), Parallel sequence mining on shared-memory machines, in Large-

Scale Parallel Data Mining (M. J. Zaki and C.-T. Ho, eds), Springer, pp. 161–
189.

M. J. Zaki and C.-T. Ho, eds (2000), Large-Scale Parallel Data Mining, Vol. 1759
of Lecture Notes in Artificial Intelligence, Springer.

T. Zhang, R. Ramakrishnan and M. Livny (1996), BIRCH: An efficient data clus-
tering method for very large databases, in Proc. 1996 ACM–SIGMOD Int.

Conf. Management of Data (SIGMOD’96), ACM Press, pp. 103–114.

